Cálculo del costo capitalizado.
El costo capitalizado (CC) se refiere al valor presente de un proyecto cuya vida útil se supone durará para siempre. Algunos proyectos de obras públicas tales como diques, sistemas de irrigación y ferrocarriles se encuentran en esta categoría. Además, las dotaciones permanentes de universidades o de organizaciones de caridad se evalúan utilizando métodos de costo capitalizado. En general, el procedimiento seguido al calcular el costo capitalizado de una secuencia infinita de flujos de efectivo es el siguiente:
· Trace un diagrama de flujo de efectivo que muestre todos los costos y/o ingresos no recurrentes (una vez) y por lo menos dos ciclos de todos los costos y entradas recurrentes (periódicas).
· Encuentre el valor presente de todas las cantidades no recurrentes.
· Encuentre el valor anual uniforme equivalente (VA) durante un ciclo de vida de todas las cantidades recurrentes y agregue esto a todas las demás cantidades uniformes que ocurren en los años 1 hasta el infinito, lo cual genera un valor anual uniforme equivalente total (VA).
· Divida el VA obtenido en el paso 3 mediante la tasa de interés “i” para lograr el costo capitalizado.
· Agregue el valor obtenido en el paso 2 al valor obtenido en el paso 4.
El propósito de empezar la solución trazando un diagrama de flujo de efectivo debe ser evidente. Sin embargo, el diagrama de flujo de efectivo es probablemente más importante en los cálculos de costo capitalizado que en cualquier otra parte, porque éste facilita la diferenciación entre las cantidades no recurrentes y las recurrentes o periódicas.
Costo capitalizado = VA / i ó VP = VA / i ; P = A / i
Ejemplo: Calcule el costo capitalizado de un proyecto que tiene un costo inicial de $150,000 y un costo de inversión adicional de $50,000 después de 10 años. El costo anual de operación será de $5,000 durante los primeros 4 años y $8,000 de allí en adelante. Además se espera que haya un costo de adaptación considerable de tipo recurrente por $15000 cada 13 años. Suponga que i = 15 % anual.
P1 = -150,000 - 50,000(P/F,15%,10[0.2472]) = -$162,360.00
A1 = -15,000(A/F,15%,13[0.02911] = -$436.65
P2 = -436.65 / 0.15 = -$2911.00
P3 = 5,000 / 0.15 = -$33,333.33
P4 = -3,000 / 0.15 (P/F,15%,4[0.5718]) = -$11,436.00
VP = P1 + P2 + P3 + P4 = -$210,040.33
Actualmente hay dos lugares en consideración para la construcción de un puente que cruce el río Ohio. El lado norte, que conecta una autopista estatal principal haciendo una ruta circular interestatal alrededor de la ciudad, aliviaría en gran medida el tráfico local. Entre las desventajas de éste lugar se menciona que el puente haría poco para aliviar la congestión de tráfico local durante las horas de congestión y tendría que ser alargado de una colina a otra para cubrir la parte más ancha del río, las líneas del ferrocarril y las autopistas locales que hay debajo. Por consiguiente, tendría que ser un puente de suspensión. El lado sur requeriría un espacio mucho más corto, permitiendo la construcción de un puente de celosía, pero exigiría la construcción de una nueva carretera.
El puente de suspensión tendría un costo inicial de $30,000,000 con costos anuales de inspección y mantenimiento de $15,000. Además, el suelo de concreto tendría que ser repavimentado cada 10 años a un costo de $50,000. Se espera que el puente de celosía y las carreteras cuesten $12,000,000 y tengan costos anuales de mantenimiento de $10,000. Así mismo, éste tendría que ser pulido cada 10 años a un costo de $45,000. Se espera que el costo de adquirir los derechos de vía sean de $800,000 para el puente de suspensión y de $10,300,000 para el puente de celosía. Compare las alternativas con base en su costo capitalizado si la tasa de interés es de 6% anual.
Solución:
Alternativa 1: P = 30,000,000 + 800,000; A = 15,000; R1 = 50,000 c/10 años.
Alternativa 2: P = 12,000,000 + 10,300,000; A = 8,000; R1 = 10,000 c/ 3 años; R2 =45,000 c/ 10 años.
VP1 = -30,000,000 - 800,000 -(15,000/0.06) - ((50,000/0.06)(A/F,6%,10)[0.07587]) = -$31,113,225.00
VP2 = -12,000,000 - 10,300,000 -- ((10,000/0.06(A/F,6%,3)[0.31411]) - ((45,000/0.06(A/F,6%,10)[0.07587]) = -$22,542,587.50
Se debe construir el puente de celosía, puesto que su costo capitalizado es más bajo.
Ejemplo: Un ingeniero de una ciudad está considerando dos alternativas para el suministro de agua local. La primera alternativa comprende la construcción de un embalse de tierra sobre un río cercano, que tiene un caudal altamente variable. El embalse formará una represa, de manera que la ciudad pueda tener una fuente de agua de la cual pueda depender. Se espera que el costo inicial del embalse sea de $8,000,000 con costos de mantenimiento anual de $25,000 y que el embalse dure indefinidamente.
Como alternativa, la ciudad puede perforar pozos en la medida requerida y construir acueductos para transportar el agua a la ciudad. El ingeniero estima que se requerirá inicialmente un promedio 10 pozos a un costo de $45,000 por cada uno, incluyendo la tubería de conducción. Se espera que la vida promedio de un pozo sea de 5 años con un costo anual de operación de $12,000 por pozo. Si la tasa de interés que se utiliza es del 15% anual, determine cuál alternativa debe seleccionarse con base en sus costos capitalizados.
Alternativa 1: P = 8,000,000; A = 25,000
Alternativa 2: P = 45,000 * 10; n = 10 años; A = 12,000 * 10
VP1 = -8,000,000 - 25,000/0.15 = -$8,166,666.67
A1 = -45,000*10(A/P,15%5[0.29832]) = -134,244.00
A2 = 12,000 * 10 = 120,000
VP2 = (A1 + A2)/i = (-134,244 - 120,000) / 0.15 = -$1,694,960.00
Los costos son considerablemente más baratos que el embalse.
Fuentes.
Comentarios.
Este tema es indispensable para todo administrador, ya que aquí se estudia el costo capitalizado (CC) el cual se refiere al valor presente de un proyecto cuya vida útil se supone durará para siempre. Algunos proyectos de obras públicas tales como diques, sistemas de irrigación y ferrocarriles se encuentran en esta categoría.
No hay comentarios.:
Publicar un comentario